びびりは、フライス加工においてコストが高くつき続ける永続的な問題です。 びびり振動の影響は、工具の損傷、ワークピースの廃棄、さらには工作機械の損傷につながる可能性があります。 さらに悪いことに、工作機械のオペレータはチャタリングのリスクを考慮して加工パラメータの選択を慎重になりすぎて、機械の能力を最大限に活用できなくなる可能性があります。 通常、工作機械の処理能力は半分または一部しか使用されません。
フラッターとは自励振動の一種で、スピンドルモーターからの安定した入力エネルギーが何らかの機構を経て振動に変換されることをいいます。 工作機械の振動の主なメカニズムは、振動波の正帰還増幅です。 本質的に、加工システム(工具やワークを含む)の動的剛性が不十分です。 カッター刃がワークを切削すると振動が発生し、振動するカッター歯によりワーク表面に波紋が生じます。 次の歯が波形面に接触すると、表面の波形によって切りくず厚さが変化し、切りくず厚さの変化により切削抵抗が変化し、切削抵抗の変化により振動が発生します。
びびり機構を解消する方法の 1 つは、加工システムの動的特性をテストし、そのテスト結果を使用して安定切削領域マップを計算し、安定範囲内で切削条件を選択することです。 この事前制御範囲戦略は、波形表面と一致するように工具の振動を調整することに依存しています。 表裏の波形が一致すると、切りくず厚さは変化せず、振動は止まります。 隣接する歯間の振動波の数が正確に 1、2、または任意の整数の場合、安定サイン曲線グラフ上に安定区間が表示されます。 この種の加工戦略では、安定した速度を把握し、許容される主軸速度範囲内で安定した速度を維持し、均等に分布したカッターの歯を持ち、主軸速度を正確に制御する必要があります。
別の戦略は、歯の間隔を変えることによって振動波の正帰還増幅メカニズムを抑制することです。 カッター刃のピッチを非対称(不等)にすると、各カッター刃で前のカッター刃が削った凹凸面の波形が異なり、振動が抑制されます。 等間隔の歯を有する工具と比較して、不等歯間隔を有する工具は、一般に、より安定した軸方向の切込み深さを達成することができる。
ただし、そのような結果を得るには、慎重な見積もりが必要です。 送りは一定であるため、歯ピッチが変わると一刃当たりの送りが異なります。 これは通常、1 つの歯だけが最大の切りくず負荷に耐えることができ、残りの歯は最大の負荷では切削できないことを意味します。 このため、工具の 1 回転あたりの有効送りを減らす必要があり、歯のバランスがちょうど取れるまで軸方向の切込み深さを増やすことで、送りの減少を調整する必要があります。
たとえば、均一に分布した歯と最も安定した軸方向切込み深さ (10mm) を備えた 4 枚刃エンドミルを考えてみましょう。 歯は90°に均等に配置されており、配列方向はそれぞれ0°、90°、180°、270°です。 許容チップ荷重(1刃あたりの送り)が0.2mmの場合、1回転あたりの送りは0.8mm/revとなります。 1 つの歯の向きだけが 10°変化すると、これらの歯の向きは 0°、100°、190°、280°になります。 したがって、歯の間隔は 100° (最大間隔)、90°、90°、80° (最小間隔) になります。
最大歯間距離での刃当たりの送りが許容限界値を超えないようにするため、最大歯間距離を管理歯間距離として使用します。 等間隔カッタ刃送りを基準として、最大間隔(この例では90°/100°)に対する等間隔の比率に応じて送り量を減らす必要があります。 このように、各歯間距離に対応するチップロードは、それぞれ0.2mm、0.18mm、0.18mm、0.16mmとなる。 1回転あたりの送りは0.72mm/revです。 この工具の場合、安定した軸方向切込み深さの許容増加量は 100/90 比より大きくなければなりません。これは、11.1 mm が切りくず除去速度のちょうど臨界値であることを意味します。 一般に、この方法を用いて振動波の正帰還増幅を抑制する場合、不等分割工具が実用価値を持つためには、軸方向の切込み量を最大分割/等分割の比の2倍にする必要がある。
同様に、主軸速度を変更することでも振動波の正帰還増幅を抑制できますが、主軸が 1 回転以上回転する場合には、工具歯間隔も効果的に変更できます。 ただし、送りは固定されているため、最大距離で送りを制御できます。 切りくず除去率の増加を達成するには、主軸速度の変更により、安定した軸方向切込み深さが最大ピッチ/等ピッチ比の 2 倍になる必要があります。